

IPS Assemblers
Programmer’s Reference
Issue 2.0.1
June 1, 2019

This document is subject to modification. Please

contact the maintainer of the document for the latest
version.

 AMSAT-BDA

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

 ii

CC0 1.0 Universal (CC0 1.0)
Public Domain Dedication

No Copyright
• The person who associated a work with this deed has dedicated the work to the

public domain by waiving all of his or her rights to the work worldwide under
copyright law, including all related and neighboring rights, to the extent allowed
by law.

You can copy, modify, distribute and perform the work, even for commercial
purposes, all without asking permission. See Other Information below.

Other Information

• In no way are the patent or trademark rights of any person affected by CC0, nor
are the rights that other persons may have in the work or in how the work is
used, such as publicity or privacy rights.

• Unless expressly stated otherwise, the person who associated a work with this
deed makes no warranties about the work, and disclaims liability for all uses of
the work, to the fullest extent permitted by applicable law.

• When using or citing the work, you should not imply endorsement by the author
or the affirmer.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

 iii

The first version of this document was written
by Robin A. Gape, G8DQX

This document is maintained by Paul C. L. Willmott, VP9MU.

Reports of errors should be sent to vp9mu@amsat.org

DOCUMENT HISTORY LOG

Status
(Baseline/
Revision/
Canceled)

Document
Revision

Effective
Date

Description

Baseline

1.0.0

September,
1985

Initial version by Robin Gape (RG).

Revision 2.0.0 October 24,
2002

Converted from WordStar format to MS
Word, and reformatted by Paul Willmott
(PW)

Revision 2.0.1 June 1,
2019

Document placed in the public domain
(PW)

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

iv

IPS ASSEMBLERS .. 1
CC0 1.0 UNIVERSAL (CC0 1.0) PUBLIC DOMAIN DEDICATION .. II

No Copyright .. ii
Other Information ... ii

DOCUMENT HISTORY LOG ...III

IPS ASSEMBLERS .. 1

AVAILABLE ASSEMBLERS .. 1
USE OF ASSEMBLERS IN IPS .. 1
ASSEMBLER APPLICATIONS .. 2
ASSEMBLER PHILOSOPHY. ... 2
ASSEMBLER DEFINITION ... 2
CODE .. 2
NEXT... 2
RCODE ... 3
HACKING .. 3
CODE DEPOSIT .. 4
OPERAND ORDER .. 4
MNEMONICS ... 4
STRUCTURED CONTROL FLOW .. 4
HANDLING OF JUMP ADDRESSES... 5
TH/AGAIN ... 6
USE OF REGULAR IPS WORDS .. 6
ASSEMBLER MACROS .. 6
IPS ASSEMBLER INTERFACE ... 7
MACHINE RESOURCES... 8

Stack and memory layout ... 8
Stack layout ... 8
Code and data memory layout ... 8
Memory map .. 10

APPENDIX A – CREATIVE COMMONS CC0 1.0 UNIVERSAL ... 11
Statement of Purpose .. 11

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

1

IPS ASSEMBLERS

The following introduction to assembler programming in IPS explains the general
principles involved. Briefly: DON'T. If you must, this introduction must be supplemented
by the processor specific documentation for the processor that you will be using, and the
machine specific documentation for the target that you will attempt to program on.

The principal reason for the development of the IPS assemblers is to allow the
compilation of IPS for a particular target machine. (Normally this is a cross or X-
Compilation)

Available assemblers

IPS assemblers have been written for the following processors:

• RCA 1802
• 6502
• 6800
• 6809
• 8080/Z80
• Am1601
• ARM

Use of assemblers in IPS

IPS has sufficient resources to program most problems without having to be intimately
familiar with either the structure or the machine language of any particular target
machine. The 3 major exceptions are:

i) to interface to particular hardware. The I/O structure of a particular IPS

implementation may not be capable of the desired interface without modification,
particularly if interrupts are involved.

ii) to program a time critical problem which can not be allowed any overhead. The

IPS emulator has an overhead of typically 25 microseconds per executed word.
Further, IPS treats all numbers as 16-bit. This results in an overhead if only bytes
need to be manipulated. These two effects result in IPS programs typically
running about 2 to 3 times slower than optimum machine code.

iii) to program special mathematical operations, such as rotational operations which

would be inefficient using the standard IPS operators.

All these classes of problems are addressed by the ability to define new IPS words in
terms of machine instructions rather than other IPS words. These newly defined words
can then be used in the same fashion as other IPS words, but giving the programmer
machine level access.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

2

The IPS assembler provides the ability to define new words for a particular
processor/machine. For the programmer to use an assembler successfully they must be
familiar with the particular assembler that is used with their target machine.

Assembler applications

The IPS assemblers are intended mainly for short routines, that interface between high
level IPS, the processor and application hardware. The IPS assemblers are not intended
to support extended programs.

Assembly programs are hard to debug, often use more memory than the high-level
equivalent, and are machine specific. Assembler routines cannot easily be transferred
from one processor to another.

When programming time critical routines in assembler, it is usually only worthwhile
assembly coding the inner loop.

Assemblers are for consenting adults (!) only

Assembler philosophy.

The assemblers have been kept as simple and unfussy as possible. Note that no special
action is required if it is desired to assemble code for one sort of processor on a machine
with a different processor.

Assembler definition

IPS allows the programmer to define new words as a sequence of assembler
instructions. Note that assembly takes place in keyboard mode, compilation mode is not
entered. (A colon definition would result in the compiler entering compilation mode.)

CODE

The introduction to an IPS named assembly routine is the word CODE followed by a
name.

NEXT

The end of an assembler sequence (routine) is indicated by the word NEXT. This returns
control to the emulator, and is the usual way of finishing an IPS assembly sequence.

Note that more than one exit from an assembly sequence may be provided by the
multiple use of NEXT.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

3

 CODE a_routine (names assembly routine)

 (first action)
 …

 (last action)

 NEXT (returns control to the emulator)

Fig 1: General layout of CODE definition

RCODE

The IPS assemblers allow the dubious practice of multiple entries to a routine. This is
possible by marking an entry point with the word HIER in a CODE routine, and following
this with the word RCODE followed by the name of the new entry point.

 CODE a_routine

 (a_routine actions)
 …

 HIER (deposits address on stack for RCODE following)

 (actions common to a_routine and another_routine)

 NEXT

 RCODE another_routine (picks up routine address from stack)

Fig 2: Use of RCODE construct.

Hacking

When it is necessary to write assembly routines that will be called from other assembly
routines, the assembler can be used directly. This is necessary to produce replacement
interrupt routines, for example.

To provide a named address, the following technique is often used:

 0 FELD routine_name

 (start of subroutine)
 …

 RET (return from subroutine)

Fig 3: Naming a directly-called assembler routine.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

4

Code deposit

An assembler mnemonic, e.g. LDA, results in the corresponding machine instruction
being deposited at the location that $H points to (HERE) and in $H being incremented to
point to the next free position.

Operand order

The order of specifying addresses and operation follows the usual IPS principle of:

source, destination, operand.

Most conventional (algebraic) assemblers use a different order.

Mnemonics

The IPS assemblers often use the customary mnemonics for a particular processor.
Some mnemonics have been changed. Note that there is little commonality between the
various IPS assemblers. Equally, there is a lack of commonality in various matters
between different processors.

Structured control flow

The IPS assemblers use structuring words rather than labels and gotos. There are
(usually) no explicit jump/branch mnemonics.

The control structures provided are:

a) <condition> Y? N: TH

b) <condition> Y? TH

c) BEGIN <condition> END

d) BEGIN <condition> Y? TH/AGAIN

a) provides an equivalent to an IF (JA? NEIN: DANN) construct;

b) provides an equivalent to an IF statement without an else clause;

c) provides a controlled loop equivalent to the high level ANFANG ENDE? construct;

d) provides a controlled loop equivalent to the high level ANFANG JA?

DANN/NOCHMAL construct.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

5

The <condition> options allowed are specific to each assembler.

<condition> Y?
 (done if condition is true)
N:
 (done if condition is not true)
TH
(always done)

Fig 4: Use of Y? N: TH construct

 <condition> Y?
 (only done if condition is true)
 TH
 (always done)

Fig 5: Use of Y? TH construct

 BEGIN
 (repeated actions)
 <condition> END
 (loop only exited if condition is true)

Fig 6: Use of BEGIN END construct

BEGIN
 (start of repeated actions)
 …
<condition> Y? (loop test and exit point)
 …
 (end of repeated actions)
TH/AGAIN
(loop only exited if action is false)

Fig 7: Use of BEGIN Y? TH/AGAIN construct

Handling of jump addresses

As with high level control constructs, the stack is used to manipulate jump addresses.

When the word Y? is met, the compiler deposits the appropriate jump code at HERE,
increments $H and the value of $H is put on the stack. $H is then incremented to leave
room for an unresolved jump address, which will be provided (resolved) later to the
address specified on the stack.

When the TH is met later, the Y? jump address can now be resolved. HERE is the
address that is to be jumped to. TH takes the address of the jump address off the stack,
and stores HERE as the address for the jump associated with the Y?.

If a N: is met, a unconditional branch is assembled, again with an unresolved address
field and with the address of the jump address left on the stack. The address left by the
Y? is removed and the Y? is resolved to point to the position following the N: jump.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

6

The word BEGIN is equivalent to HERE, and simply leaves the current address on the
stack. This address is used by the END as the address of its conditional jump.

MYOPIA. It is possible to break the IPS structure rules by stack manipulation. Such
deviant and devious practices are both unwise and liable to lose you friends.

TH/AGAIN

Early IPS assemblers did not support the use of TH/AGAIN. If not already available,
define TH/AGAIN as follows:

 : TH/AGAIN ({loop start} {exit address field})
 VERT ({exit address field} {loop start})
 NEVER END (return to loop start)
 ({exit address field})
 TH (back fill exit address for Y?)
 ; (TH/AGAIN)

Fig 8: Definition of TH/AGAIN

This definition is processor independent, and relies on the handling of the jump
addresses described above.

Use of regular IPS words

Because the assembler functions in interpretative mode any valid IPS words can be
used in between assembly mnemonics, for instance to manipulate addresses.

The exit word NEXT can be used as often as necessary to create multiple exit points
from a code word.

Assembler macros

A frequently required sequence of mnemonics etc. may be made a normal IPS definition.
Each time the definition is invoked the sequence is run through again as if each
mnemonic etc. had been entered individually. Such macros can contain low level
structuring: Y? N: TH, BEGIN END. Because the high level IPS structure words are
different from those used by the assemblers, it is possible to use conditional assembly
within a macro.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

7

IPS assembler interface

Mostly, the interface between CODE definitions and IPS is via the parameter stack. At
assembler level stack operations are explicit rather than automatically managed.

6502

The stack is maintained by a pointer and appropriate machine-code instructions. If the
processor already has stack-operation instructions these are usually used for the
parameter stack, with the return stack simulated by a software pointer. In the case of the
6502 the machine stack is used for the return stack, with a software pointer for the
parameter stack.

Before any assembly programmer is let loose at an IPS system, IPS has already taken
certain machine resources into use. Particularly, certain registers and memory areas will
be used for specific purposes.

The conventions should be followed, or unpredictable consequences are likely to follow.

This information can be found from

1. the relevant IPS assembler manual, and

2. the implementation notes for the particular IPS version in use.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

8

Machine Resources

IPS requires various machine resources to run on a particular computer. Sometimes IPS'
requirements can be met by existing operating system provision, often it is necessary to
bypass the host's provided operating system.

Stack and memory layout

Clearly, there are two ways that can be chosen of representing a 16-bit number on a
byte oriented machine:

i) Reversed address in which the least significant byte is held in the lowest address
of a byte pair.

ii) High-to-low address in which the most significant byte is held in the lowest
address of a byte pair.

This is one option too many for safety!

Stack layout

The stack(s) always grow from high memory to low memory. The stack normally uses
the memory convention native to the processor in use.

Code and data memory layout

IPS compiled code and data grows from low memory towards high memory. IPS is
designed to use the reversed address convention. In the case of those implementations
which do not (6800) special conventions are necessary to allow for this.

 IPS word GROWS
 <-------> ============>

 | | | | | | | | | | |
 | | | LS | MS | LS | MS | | | | |
 | | |byte|byte|byte|byte| | | | |
 | | | | | | | | | | |

 low address high address

N.B. reversed address convention.

Fig 9: IPS code and data memory layout

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

9

 IPS word GROWS
 <-------> ============>

 | | | | | | | | | | |
 | | | MS | LS | MS | LS | | | | |
 | | |byte|byte|byte|byte| | | | |
 | | | | | | | | | | |

 low address high address

N.B. high to low address convention.

Fig 10: IPS code and data memory layout (6800/68000)

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

10

Memory map

The memory maps of various IPS implementations vary, but tend to have a similar
pattern, as typified below:

#FFFF -| Native operating system
 |
 |
 | Hardware ports
#CFFF -| x Start of parameter stack
 | x
 | \x/ parameter stack grows
 |
 -|
 | |^ code grows
 | |
 | |
#5FFF -| || original IPS end
 | ||
 | || (compiled IPS code)
 | ||
#400 -| || start of IPS code
 |
 | buffers etc.
 |
#200 -|
 |
 | return stack (depth = 128 entries)
 |
#100 -|
 |
 | emulator, etc
 |
#80 -|
 |
 | operating system variables
 |
#00 -|

Fig 11: Typical IPS Memory Map

The memory map above is loosely based on the ATARI 6502 IPS implementation.

Note that the size of parameter stack is constrained by IPS code size.

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

11

APPENDIX A – Creative Commons CC0 1.0 Universal

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT
CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS
PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS
MAKES NO WARRANTIES REGARDING THE USE OF THIS DOCUMENT OR THE
INFORMATION OR WORKS PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY
FOR DAMAGES RESULTING FROM THE USE OF THIS DOCUMENT OR THE
INFORMATION OR WORKS PROVIDED HEREUNDER.

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive
Copyright and Related Rights (defined below) upon the creator and subsequent owner(s)
(each and all, an "owner") of an original work of authorship and/or a database (each, a
"Work").

Certain owners wish to permanently relinquish those rights to a Work for the purpose of
contributing to a commons of creative, cultural and scientific works ("Commons") that
the public can reliably and without fear of later claims of infringement build upon,
modify, incorporate in other works, reuse and redistribute as freely as possible in any
form whatsoever and for any purposes, including without limitation commercial
purposes. These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific works, or to gain
reputation or greater distribution for their Work in part through the use and efforts of
others.

For these and/or other purposes and motivations, and without any expectation of
additional consideration or compensation, the person associating CC0 with a Work (the
"Affirmer"), to the extent that he or she is an owner of Copyright and Related Rights in
the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work
under its terms, with knowledge of his or her Copyright and Related Rights in the Work
and the meaning and intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be protected
by copyright and related or neighboring rights ("Copyright and Related Rights").
Copyright and Related Rights include, but are not limited to, the following:

i. the right to reproduce, adapt, distribute, perform, display, communicate, and
translate a Work;

ii. moral rights retained by the original author(s) and/or performer(s);

iii. publicity and privacy rights pertaining to a person's image or likeness depicted in
a Work;

iv. rights protecting against unfair competition in regards to a Work, subject to the
limitations in paragraph 4(a), below;

v. rights protecting the extraction, dissemination, use and reuse of data in a Work;

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

12

vi. database rights (such as those arising under Directive 96/9/EC of the European
Parliament and of the Council of 11 March 1996 on the legal protection of
databases, and under any national implementation thereof, including any
amended or successor version of such directive); and

vii. other similar, equivalent or corresponding rights throughout the world based on
applicable law or treaty, and any national implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable
law, Affirmer hereby overtly, fully, permanently, irrevocably and unconditionally waives,
abandons, and surrenders all of Affirmer's Copyright and Related Rights and associated
claims and causes of action, whether now known or unknown (including existing as well
as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for
the maximum duration provided by applicable law or treaty (including future time
extensions), (iii) in any current or future medium and for any number of copies, and (iv)
for any purpose whatsoever, including without limitation commercial, advertising or
promotional purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and successors,
fully intending that such Waiver shall not be subject to revocation, rescission,
cancellation, termination, or any other legal or equitable action to disrupt the quiet
enjoyment of the Work by the public as contemplated by Affirmer's express Statement of
Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason be judged
legally invalid or ineffective under applicable law, then the Waiver shall be preserved to
the maximum extent permitted taking into account Affirmer's express Statement of
Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants to each
affected person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and Related
Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration
provided by applicable law or treaty (including future time extensions), (iii) in any
current or future medium and for any number of copies, and (iv) for any purpose
whatsoever, including without limitation commercial, advertising or promotional
purposes (the "License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any reason be judged
legally invalid or ineffective under applicable law, such partial invalidity or
ineffectiveness shall not invalidate the remainder of the License, and in such case
Affirmer hereby affirms that he or she will not (i) exercise any of his or her remaining
Copyright and Related Rights in the Work or (ii) assert any associated claims and causes
of action with respect to the Work, in either case contrary to Affirmer's express Statement
of Purpose.

4. Limitations and Disclaimers.

a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.

b. Affirmer offers the Work as-is and makes no representations or warranties of any
kind concerning the Work, express, implied, statutory or otherwise, including

 IPS Assemblers Programmer's Reference
 Revision 2.0.1 – June 1, 2019

13

without limitation warranties of title, merchantability, fitness for a particular
purpose, non infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to the greatest
extent permissible under applicable law.

c. Affirmer disclaims responsibility for clearing rights of other persons that may
apply to the Work or any use thereof, including without limitation any person's
Copyright and Related Rights in the Work. Further, Affirmer disclaims
responsibility for obtaining any necessary consents, permissions or other rights
required for any use of the Work.

d. Affirmer understands and acknowledges that Creative Commons is not a party to
this document and has no duty or obligation with respect to this CC0 or use of
the Work.

